FUNDAMENTOS QUÍMICOS DE LA INGENIERÍA (mecánicos)- Septiembre 2018 - Original

Problema (3,5 puntos)

Mediante reacción de un metal activo con ácido clorhídrico se obtiene hidrógeno. Si se tratan 500 g de cinc (92 % pureza) con una disolución de ácido clorhídrico del 37 % de riqueza en peso y densidad 1.18 g/mL. utilizando un exceso de dicha disolución para asegurar una completa disolución del cinc (30% exceso sobre el teórico necesario):

- a) Escribir ajustada la reacción química que tiene lugar y calcular los mililitros de la disolución de ácido clorhídrico que han reaccionado y los que se han empleado en exceso.
- b) El volumen mínimo de un recipiente adecuado para poder guardar, a 25°C y 1 atmósfera, el hidrógeno generado en el proceso una vez que se ha hecho en dicho recipiente el vacío.
- c) En el recipiente anterior se introducen 5 moles de selenio a 727°C, alcanzándose el equilibrio:

$$Se_{(g)} + H_{2(g)} <==> H_2 Se_{(g)} (Kp = 5 \cdot 10^{-6}).$$

Calcular en el equilibrio la presión total alcanzada en el recipiente y las presiones parciales de los gases. Datos: masas atómicas: Zn= 65,4; H= 1; Cl= 35,5; Constante de los gases ideales= 0,082 atm.L/mol.K

Cuestiones (1 punto cada una)

- 1. Mediante la representación del diagrama de Ellingham correspondiente, determine si el sistema carbono/dióxido de carbono puede reducir al óxido ferroso. Justifique su respuesta, escriba la reacción global que tiene lugar y, en caso de ser posible el proceso, señale la temperatura a la cual se favorecerá la reducción del óxido ferroso.
- 2. Escribir un ejemplo de cada una de las siguientes reacciones orgánicas: reacción de adición, reacción de condensación, reacción de alquilación y reacción de oxidación.
- 3. De acuerdo con los potenciales de reducción estándar E^0 (MnO₄-/Mn²⁺)= + 1,51 V, E^0 (Sn⁴⁺/Sn²⁺)= +0,15 V y E⁰(NO₃/NO)= +0,96 V, razonar si es posible que tengan lugar las siguientes reacciones redox:

a)
$$NO_3 + Mn^{2+} \longrightarrow$$

b) $MnO_4 + Sn^{2+} \longrightarrow$

- 4. Calcular la variación de pH que tendrá lugar cuando a un litro de agua pura se le añaden 5 Ml de NaOH 0,30 M.
- 5. Dada la reacción $X_{(g)} + Y_{(g)} \longrightarrow Z_{(g)}$ cuya ecuación de velocidad es: v = k [X][Y]. Si se reduce en un tercio el volumen que ocupan los gases reaccionantes, determinar cuánto variará la velocidad de reacción.

Tema (1,5 puntos)

Modelos de la cinética química: teoría de las colisiones y teoría del estado de transición o complejo activado.

SOLUCIONES

Problema (3,5 puntos)

Mediante reacción de un metal activo con ácido clorhídrico se obtiene hidrógeno. Si se tratan 500 g de cinc (92 % pureza) con una disolución de ácido clorhídrico del 37 % de riqueza en peso y densidad 1,18 g/mL, utilizando un exceso de dicha disolución para asegurar una completa disolución del cinc (30% exceso sobre el teórico necesario):

- a) Escribir ajustada la reacción química que tiene lugar y calcular los mililitros de la disolución de ácido clorhídrico que han reaccionado y los que se han empleado en exceso.
- b) El volumen mínimo de un recipiente adecuado para poder guardar, a 25°C y 1 atmósfera, el hidrógeno generado en el proceso una vez que se ha hecho en dicho recipiente el vacío.
- c) En el recipiente anterior se introducen 5 moles de selenio a 727°C, alcanzándose el equilibrio: $Se_{(g)} + H_{2(g)} <==> H_2 Se_{(g)} (Kp = 5 \cdot 10^{-6}).$

Calcular en el equilibrio la presión total alcanzada en el recipiente y las presiones parciales de

Datos: masas atómicas: Zn= 65,4; H= 1; Cl= 35,5; Constante de los gases ideales= 0,082 atm.L/mol.K

RESOLUCIÓN

a) La reacción que tiene lugar es entre el Zn puro: g = 500.0,92 = 460 g de Zn puro y el HCl:

Zn +	2.HCI	^	ZnCI ₂ +	H ₂
65,4	2.36,5			2
460	х			у

$$X = \frac{460.2.36.5}{65.4}$$
 513,46 g de HCI. Puesto que es una

disolución del 37%: g =
$$\frac{513,46}{0,37}$$
 = 1387,7 g de disolución

Y si su densidad es de 1,18: $V = \frac{1387,7}{1,18} = 1176 \text{ mL de}$

disolución serán necesarios en la reacción.

Para calcular la cantidad de disolución de ac. Clorhídrico utilizado, hemos de tener en cuenta que se nos dice que se emplea: "30% exceso sobre el teórico necesario". A esta pregunta caben dos posibles interpretaciones:

- La que más se adapta a lo pedido: que se utilice un exceso del 30% calculandolo sobre los 1176 mL, que es el teórico necesario: Habría que añadir en exceso: 1176.0,30 = 352,8 ml (serían en total: 1176+352.8 = 1528.8 mL
- O bien si interpretamos que, de la cantidad empleada sobre el 30%, lo cual nos indicaría que los 1176 mL representarán el 70% de la cantidad utilizada. En este caso, la cantidad real será aquella en la cual su 70% sean esos 1176 mL, es decir: mL utilizados = $\frac{1176}{0.7}$ = 1680 mL
- b) El volumen mínimo del recipiente será el volumen que ocupe el Hidrógeno desprendido en la reacción en las condiciones dadas (25°C y 1 atm).

Teniendo en cuenta la estequiometría de la reacción, planteada en el apartado anterior:

$$\frac{65,4 \text{ g Zn} - - - 2 \text{ g H}_2}{460 \text{ g} - - - - x}$$
 $x = \frac{460.2}{65,4} = 14,07 \text{ g de H}_2$ desprendido, los cuales ocuparán un volumen

que calculamos aplicando la ecuación general de los gases para las condiciones dadas, es decir:

$$1.V = \frac{14,07}{2}.0,082,298 ==> V = 171,87 L$$
, que serà el volumen que tiene que tener el recipiente

c) Si introducimos una cierta cantidad de Selenio (5 moles) en dicho recipiente de 171,47 L en el cual ya tenemos 14,07 g de H₂ ($\frac{14,07}{2}$ = 7,035 moles) se establecerá el equilibrio, para el cual conocemos Kp, por lo que tenemos que calcular el valor de Kc: Kp = Kc.(R.T) $^{\triangle n}$, siendo Δn la variación del nº de moles en el equilibrio (Nº noles productos - nº moles reactivos, es decir ∧n = 1-1-1 = -1, por tanto: 5.10^{-6} = Kc. $(0.082.1000)^{-1}$, de donde Kc = $5.10^{-6}.0.082.1000$ = $4.1.10^{-2}$

Nº moles	Se +	H ₂	->	H ₂ Se
Inicial	5	7,035		
En equilibrio	5 - x	7,035 - x		Х

$$Kc = \frac{[H_2 Se]}{[Se] \cdot [H_2]}; \ 4,1.10^{-4} = \frac{\frac{x}{171.87}}{\left(\frac{5-x}{171.87}\right) \cdot \left(\frac{7,035-x}{171.87}\right)}$$

Siendo x = nº de moles de Se que reaccionan

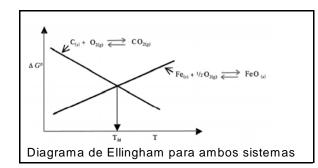
En este caso teniendo en cuenta el pequeño valor de la constante Kc, podemos despreciar x tanto frente a 5 (caso del Se) como a 7,035 (caso de H₂), por lo que la expresión anterior nos quedará:

$$4,1.10^{-4} = \frac{x.171,87}{5.7,035}$$
, y de ahí: $x = \frac{4,1.10^{-4} 5.7,035}{171,87} = 8,39.10^{-5}$ moles de Se que reaccionan.

Por tanto, y una vez alcanzado el equilibrio tendremos las siguientes cantidades de los diferentes componentes, los cuales, en el recipiente en el cual se encuentran (de 171,87 L) a 1000ºK, ejercerán las presiones parciales siguientes:

Se: N° moles 5 - 8,39.10⁻⁵ \approx 5 moles. H₂: N° moles 7,035 - 8,39.10⁻⁵ \approx 7,035 moles. H₂: N° moles 8,39.10⁻⁵ \approx 7,035 moles. P_{8e}.171,87= 5.0,082.1000 ; P_{8e} = 2,38 atm P_{H2}. 171,87= 7,035.0,082.1000 ; P_{H2} = 3,36 atm P_{H2}. 171,87= 8,39.10⁻⁵ .0,082.1000 ; P_{8e} = 4,0.10⁻⁵ atm

Y por consiguiente, la presión total del sistema será la suma de las presiones parciales de todos ellos $P_{\text{total}} = P_{\text{Se}} + P_{\text{H2}} + P_{\text{H2Se}} = 2,38 + 3,36 + 4,0.10^{-5} = 5,74 \text{ atm totales}$


Cuestiones (1 punto cada una)

1. Mediante la representación del diagrama de Ellingham correspondiente, determine si el sistema carbono/dióxido de carbono puede reducir al óxido ferroso. Justifique su respuesta, escriba la reacción global que tiene lugar y, en caso de ser posible el proceso, señale la temperatura a la cual se favorecerá la reducción del óxido ferroso.

RESOLUCIÓN

Ver páginas 427 y 428 del texto recomendado. Para realizar los cálculos con una cierta precisión, se necesitarían conocer más datos: AS, AH para todos los compuestos que intervienen en

El diagrama de Ellingham representa las variaciones de 🖊 G frente a la temperatura para un proceso determinado

Teniendo en cuenta las expresiones de ∆G para ambos sistemas:

1-
$$C/CO_2$$
 $\underline{\wedge}G_1 = \underline{\wedge}H_1 - T.\underline{\wedge}S_1$

2- Fe/FeO
$$\underline{\Lambda}G_2 = \underline{\Lambda}H_2 - T.\underline{\Lambda}S_2$$

El proceso se favorece a partir de la temperatura T_M, a partir de la cual \G para el sistema Fe/FeO es mayor que la del sistema C/CO₂

2. Escribir un ejemplo de cada una de las siguientes reacciones orgánicas: reacción de adición, reacción de condensación, reacción de alquilación y reacción de oxidación.

RESOLUCIÓN

- Reacción de adición: CH 2-CH 2 + HCI -> CH 3 CH 2 CI
- Reacción de condensación: CH 3 COOH + CH 3 CH 2OH -> CH3 COOCH2 CH3 + H2O
- Reacción de alquilación: C_6H_6 + CH_3Br \longrightarrow C_6H_5 - CH_3 + HBr
- Reacción de oxidación: CH 3 -CH 2OH + ½ O2 -> CH 3 COOH + H2O
- 3. De acuerdo con los potenciales de reducción estándar Eº (MnO₄-/Mn²⁺)= + 1,51 V, Eº (Sn⁴⁺/Sn²⁺)= +0,15 V y E^o(NO₃⁻/NO)= +0,96 V, razonar si es posible que tengan lugar las siguientes reacciones redox:

RESOLUCIÓN

Para que sea posible una reacción redox, el potencial de reducción del oxidante debe ser mayor que el potencial de reducción del reductor

A)
$$NO_3^- + Mn^{2+} \longrightarrow NO + MnO_4^-$$
: Puesto que $E^0(NO_3^-/NO) < E^0(MnO_4^-/Mn^{2+})$ No es posible B) $MnO_4^- + Sn^{2+} \longrightarrow Mn^{2+} + Sn^{4+}$: Puesto que $E^0(MnO_4^-/Mn^{2+}) > E^0(Sn^{4+}/Sn^{2+})$; Sí es posible

4. Calcular la variación de pH que tendrá lugar cuando a un litro de agua pura se le añaden 5 MI de NaOH 0,30 M.

RESOLUCIÓN

El pH se define como pH = -lg[H_3O^+], y el pOH = -lg[OH]. La relación entre ellos es: pH + pOH = 14

En el caso del agua pura el pH = pOH = 7

Si le añadimos una cierta cantidad de NaOH, aumentará la concentración de iones OH y por tanto se modificarán los valores tanto del pOH como del pH.

Para determinar la concentración del NaOH, y por tanto de los iones OH⁻ en la disolución obtenida al mezclar ambas, calculamos el nº de moles de NaOH añadidos partiendo de la expresión de

la Molaridad:
$$M = \frac{n^{\circ} \ moles}{Litros}$$
; $0.30 = \frac{n^{\circ} \ moles}{0.005}$; N° moles NaOH añadidas = $0.30.0,005 = 1.5.10^{-3}$ moles

Al añadir esos 5mL a 1 Litro de agua pura, el volumen total será la suma de ambos:

$$V = 1000 + 5 = 1005 \text{ mL} = 1,005 \text{ L}$$

Por tanto la nueva concentración del NaOH será: $M = \frac{n^2 \text{ moles}}{Litros} = > M = \frac{1,5.10^{-3}}{1,005}$; **M = 1,49.10**⁻³ **Molar**

Al tratarse de un electrolito fuerte, el NaOH estará completamente disociado, por lo que:

	NaOH	_^	Na++	OH.
Inicial	1,49.10 ⁻³		-	
En equilibrio			1,49.10 ⁻³	1,49.10 ⁻³

$$pOH = -lg[OH^{-}] = -lg(1,49.10^{-3}) = 2,83$$

$$pH = 14 - 2.83 = 11.17$$

Por tanto la variación del pH supone un aumento de 4,17 unidades (desde 7 a 11,17)

5. Dada la reacción $X_{(g)} + Y_{(g)} \longrightarrow Z_{(g)}$ cuya ecuación de velocidad es: v = k [X][Y]. Si se reduce en un tercio el volumen que ocupan los gases reaccionantes, determinar cuánto variará la velocidad de reacción.

RESOLUCIÓN

Si el volumen del recipiente se reduce en un tercio, el volumen resultante será de 2/3 del volumen inicial, lo cual afectará obviamente a la concentración de los reactivos A y B.

Así tendremos:

Concentraciones iniciales	Nuevo volumen	Nueva concentración
$[X]_{INICIAL} = \frac{n_X}{V}$	$V - \frac{1}{3}V = \frac{2}{3}V$	$[X]_{\text{nueva}} = \frac{n_X}{\frac{2}{3}V} = \frac{3}{2}\frac{n_X}{V} = \frac{3}{2}[X]_{INICIAL}$
$[Y]_{INICIAL} = \frac{n_{\rm T}}{V}$	$V - \frac{1}{3}V = \frac{2}{3}V$	$[Y]_{\text{nueva}} = \frac{n_B}{\frac{2}{3}V} = \frac{3}{2}\frac{n_B}{V} = \frac{3}{2}[B]_{INICIAL}$

Velocidad de reacción inicial: V_{INICIAL} = k [X][Y]

Nueva velocidad de reacción:
$$V_{\text{NUEVA}} = \text{k.}[X]_{\text{NUEVA}} \cdot [Y]_{\text{NUEVA}} = \text{k.} \left(\frac{3}{2}[X]\right) \cdot \left(\frac{3}{2}[Y]\right) = \frac{9}{4} \cdot \left(k \cdot [X] \cdot [Y]\right) = =>$$

$$V_{\text{NUEVA}} = \frac{9}{4} \cdot V_{\text{INICIAL}}$$

Tema (1,5 puntos)

Modelos de la cinética química: teoría de las colisiones y teoría del estado de transición o complejo activado.

Ver página 163 y siguientes del texto recomendado

Texto recomendado: QUÍMICA APLICADA A LA INGENIERÍA. Caselles, M.J., Gómez, M.R., Molero, M. y Sardá, J. Ed, UNED. Madrid (2015)