3º B - ESO - FÍSICA Y QUÍMICA - 1ª evaluación - 12 diciembre 2008

- 1a a) Si le dan un trozo de materia, ¿Cómo distinguiría si se trata de una sustancia homogénea o heterogénea?. RAZONE su contestación.
- b) Defina los conceptos de magnitud y de MOL.
- 2ª Indique razonadamente en cual de las siguientes cantidades hay mayor número de moléculas:
 - a) 60 gramos de HIDRÓXIDO DE SODIO.
 - b) 2 moles de TETRAOXOFOSFATO(V) DE HIDRÓGENO
- 3ª Escriba la fórmula de los compuestos siguientes:
 - 1- ACIDO CARBÓNICO.

2- TRICLORURO DE HIERRO

- 3- DIOXOYODATO(III) DE HIDRÓGENO
- 4- OXIDO DE CROMO(VI)

- 5- DIOXÍGENO.
- 4ª Escriba el nombre de los compuestos cuyas fórmulas son:
 - $1- H_2 S 2- HNO_3 3- H_2 SO_4 4- MnO_2$
- 5- Zn(OH)₂
- 5a Calcule el peso molecular del HIDRÓXIDO DE ESTAÑO(IV). ¿Cuantas moles y cuantas moléculas habrá en 18,7 gramos de dicho compuesto?
- 6a Ordena los siguientes móviles según un orden creciente de velocidad: a) 72 Km/h; b) 18 m/s; c) 12000 cm/min: d) 72000 mm/h.

,						
DATOS: Pesos atómicos	F = 19;	Fe = 56;	H = 1;	Na = 23 ;	O = 16	
	P = 31;	S = 32;	Sn = 119;	Se = 79;	B = 11	
	I = 127;	Mn = 55;	Cr = 52;	Si = 28 ;	C = 12	

- 1ª a) Una sustancia es HOMOGÉNEA cuando tiene la misma composición y propiedades en todos sus puntos, y es HETEROGENIA cuando tiene una composición o propiedades diferentes en unas partes que en otras. Por tanto sin más que observar ese trozo de materia podremos saber si es homogénea (será idéntica en todos los puntos) o heterogénea (tendrá un aspecto, color, textura, etc. diferente en unos puntos que en otros.
 - B) MAGNITUD es todo aquello que se puede medir.

MOL es la cantidad de sustancia que contiene el número de Avogadro (6,023.10²³) de partículas

- 2^a Indique razonadamente en cual de las siguientes cantidades hay mayor número de moléculas:
 - a) 60 gramos de HIDRÓXIDO DE SODIO.
 - b) 2 moles de TETRAOXOFOSFATO(V) DE HIDRÓGENO

RESOLUCIÓN

A) **NaOH**:

Masa molecular:	1 mol6,023.10 ²³ moleculas40 g $v = \frac{60 \cdot 6,023.10^{23}}{1000}$
Na: 1.23 = 23 O: 1.16 = 16 H: 1.1 = 1 Total: 40	9,034.10 ²³ moléculas de NaOH

B) Tetraoxofosfato(V) de hidrógeno Puesto que nos indican el número de moles, no necesitamos calcular su masa molecular ni su fórmula

$$\frac{1 \text{ mol} - -6,023.10^{23} \text{ moleculas}}{2 \text{ moles} - - - - - - - - y} \right\} \text{ y} = \frac{2 \cdot 6,023.10^{23}}{1} =$$

12,046.10²³ moléculas de Tetraoxofosfato(V) de H

Por tanto hay mayor número de moles en la cantidad B)

- 3ª Escriba la fórmula de los compuestos siguientes:
 - 1- ÁCIDO CARBÓNICO -----> H₂CO₃

 - 2- TRICLORURO DE HIERRO ------> Fe Cl₃
 3- DIOXOYODATO(III) DE HIDRÓGENO-----> HIO₂
 - 4- OXIDO DE CROMO(VI)-----> CrO 3
 - 5- DIOXÍGENO-----> O 2
- Escriba elnombre de los compuestos cuya fórmula es:

 - 1- H₂S ---- SULFURO DE HIDRÓGENO------ÁCIDO SULFHÍDRICO
 2- HNO₃ ---- TRIOXONITRATO(V) DE H -------ÁCIDO TRIOXONÍTRICO(V)------ ÁCIDO NÍTRICO
 - 3- H, SO, --TETRAOXOSULFATÓ(VI) DE H.---- ÁC. TETRAOXOSULFÚRÌCÓ(VI)----ÁCIDO SULFÚRICO
 - 4- MnO 2 ---- DIÓXIDO DE MANGANESO ------OXIDO DE MANGANESO(IV)
 - 5- Zn(OH) 2 DIHIDRÓXIDO DE ZINC.----- HIDRÓXIDO DE ZINC(II)

5^a - Calcule el peso molecular del HIDRÓXIDO DE ESTAÑO(IV). ¿Cuantas moles y cuantas moléculas habrá en 18,7 gramos de dicho compuesto?

RESOLUCIÓN

6a - Ordena los siguientes móviles según un orden creciente de velocidad: a) 72 Km/h; b) 18 m/s; c) 12000 cm/min; d) 72000 mm/h.

a)
$$72\frac{Km}{h} = 36.\frac{1000m}{3600s} = 72.\frac{1000}{3600}.\frac{m}{s} = \frac{72000}{3600}.\frac{m}{s} = 20\frac{m}{s}$$
b) $18\frac{m}{s}$
c) $12000\frac{cm}{\min} = 12000.\frac{0,01m}{60s} = 12000.\frac{0,01}{60}.\frac{m}{s} = \frac{120}{60}.\frac{m}{s} = 2\frac{m}{s}$
d) $72000\frac{mm}{h} = 72000.\frac{0,001m}{3600s} = 72000.\frac{0,001}{3600}.\frac{m}{s} = 0,02\frac{m}{s}$