- 1a- Escriba la fórmula y/o el nombre de los compuestos siguientes:
 - 1- ACIDO NITRICO.
 - 2- TRIOXIDO DE DICLORO
 - 3- TRIOXOSULFATO(IV) DE SODIO
 - 4- H₂CO₃
 - 5- Cu(OH)₂
 - 6- Be Cl2
- 2ª- Ordene las siguientes densidades en orden creciente y en unidades del Sistema Internacional de Unidades:

a)
$$2\frac{Kg}{Litro}$$
 ; b) $3\frac{g}{cm^3}$; c) $1320\frac{g}{Litro}$

- 3ª-Indique razonadamente en cual de las siguientes cantidades hay mayor número de moles:
 - a) 1,17 gramos de cloruro de sodio.
 - b) 1,2.10²² moléculas de tetaoxosilicato(IV) de aluminio(III)
- 4ª- Calcule todas las expresiones de la concentración (g/L, % y Molaridad) de una disolución de ÁCIDO

SULFÚRICO sabiendo que contiene 4.9 q de soluto en 400 mL de disolución

- 5a a) A) Escriba al menos cuatro unidades fundamentales del Sistema Internacional, indicando el símbolo y la magnitud a la cual corresponden
 - b) Defina los conceptos de DISOLUCIÓN; MOLÉCULA y MOL.

DATOS: Número de Avogadro = 6,023.10²³

Pesos atómicos o masas atómicas medias:

CI = 35,5Mn = 55 Cr = 52Na = 23 F = 19 O = 16 Fe = 56P = 31 H = 1S = 32

N = 14

SOLUCIONES

- 1ª- Escriba la fórmula y/o el nombre de los compuestos siguientes:
 - 1- ACIDO NITRICO..... HNO 3.
 - 2- TRIOXIDO DE DICLORO...... Cl₂O₃
 - 3- TRIOXOSULFATO(IV) DE SODIO.... Na 2 SO 3
 - 4- H₂ CO₃...... Ac. Trioxocarbónico(IV)..... Ac. Carbónico
 - 5- Cu(OH), Hidróxido de cromo Hidróxido de cromo (III)
- 2ª- Ordene las siguientes densidades en orden creciente y en unidades del Sistema Internacional de

Unidades: a) 2
$$\frac{Kg}{Litro}$$
 ; b) 3 $\frac{g}{cm^3}$; c) 1320 $\frac{g}{Litro}$

a)
$$2\frac{Kg}{L} = 2\frac{Kg}{0,001m^3} = 2 \cdot \frac{1}{0,001} \frac{Kg}{m^3} = 2000 \frac{\text{Kg}}{\text{m}^3}$$

b)
$$3\frac{g}{cm^3} = 3\frac{0.001Kg}{(0.01m)^3} = 3\frac{0.001Kg}{0.00001m^3} = 3\frac{0.001Kg}{0.00001m^3} = 3\frac{0.001Kg}{m^3} = 3000\frac{Kg}{m^3}$$

c)
$$1320 \frac{g}{Litro} = 1320 \frac{0,001 Kg}{0,001 m^3} = 1320 \cdot \frac{0,001}{0,001} \cdot \frac{Kg}{m^3} = 1320 \cdot \frac{\text{Kg}}{\text{m}^3}$$

C < A < B

- 3ª-Indique razonadamente en cual de las siguientes cantidades hay mayor número de moles:
 - a) 1,17 gramos de cloruro de sodio.
 - b) 1,2.10²² moléculas de tetaoxosilicato(IV) de aluminio(III)

RESOLUCIÓN

a) 1.17 gramos de cloruro de sodio: NaCl.

all the grantee are electrically and electrically				
CI: $1.35,5=35,5$	$ \frac{1mol6,023.10^{23} moleculas58,5g}{Xmol Ymoleculas 1,17g} $			
Total: 58,5	Nº de moles de cloruro de sodio ==> X= 0,02 moles de NaCl			

fórmula, (que es: Al₄(SiO₄)₃) ni su peso molecular, pues nos dan el número de moléculas, y así:

$$\frac{1mol - -6,023.10^{23} moleculas}{X - - - 1,2.10^{22} moleculas} X = \frac{1.1,2.10^{22}}{6,023.10^{23}};$$

Nº moléculas de tetraoxosilicato(IV) de aluminio(III)==> X = 0,02 moléculas de Al₄(SiO₄)₃

Ambas cantidades contienen igual número de moles

4ª- Calcule todas las expresiones de la concentración (g/L, % y Molaridad) de una disolución de ÁCIDO SULFÚRICO sabiendo que contiene 4,9 g de soluto en 400 mL de disolución

RESOLUCIÓN

El peso molecular del ácido sulfúrico: H₂ SO₄ es: 2.1 + 32 + 4.16 = 98

Colocando los datos que nos dan en el cuadro de datos de una disolución:

	Soluto	Disolvente	Disolución	
MASA	4,9 +	400 =	404,9	g
VOLUMEN		 400	≃ 400	mL

Conocemos los gramos de soluto y el volumen de la disolución. Además, como es una disolución muy diluida, el volumen de disolución (400 mL) será aproximadamente igual que el volumen del disolvente, que es el agua, cuya densidad es 1 g/mL, por lo que la masa del disolvente será de 400 g, y así, la masa total de la disolución será la suma de las masas del soluto más la del disolvente

Con todos estos datos, podemos calcular ya las expresiones de la concentración que nos piden:

- g/Litro =
$$\frac{\text{gramos de soluto}}{\text{Litros de disolucion}} = \frac{4.9}{0.4} = 12,25 \text{ g/L}$$

- % en peso:
$$\frac{404.9 \text{ g disolucion} - -4.9 \text{ g soluto}}{100 - - - - - - X}$$
 X = 1,21%

- MOLARIDAD:
$$M = \frac{g_{SOLUTO}}{Pm_{SOLUTO}.L_{DISOLUCION}} = \frac{4.9}{98.0,4}$$
; M = 0,125 MOLAR