CUESTIONES

1.- El volumen inicial de un gas es 4,00 litros, ¿cuál es el volumen final después de que la presión se haya reducido desde 760 mmHg a 50 mmHg?

RESOLUCIÓN

Le aplicamos la ecuación general de los gases, teniendo en cuenta que la temperatura se mantiene constante:

i	CONDICIONES INICIALES	CONDICIONES FINALES	Ecuación g
	P = 760 mm Hg V = 4,00 L	P' = 50 mm Hg V' = ?	760.4,00
	T = 4,00 L	T T	Т
			y de ah

Ecuación general de los gases:
$$\frac{P.V}{T} = \frac{P'.V'}{T}$$
$$\frac{760.4,00}{T} = \frac{50.V'}{T}; \ V' = \frac{760.4,00.T}{50.T}$$
$$y de ahí: V' = 60,8 \ Litros$$

Dado que las presiones nos las dan en ambos casos expresadas en mm Hg, pueden realizarse los cálculos sin necesidad de transformarlas previamente en Atm, puesto que ello nos llevaría a dividir en ambos miembros por 760

$$\frac{\frac{760}{760}.4,00}{T} = \frac{\frac{50}{760}.V'}{T} \quad \text{, con lo cual el resultado no cambia}$$

2.- ¿Cuántas moléculas de carbonato cálcico, CaCO₃, existen en 25 g de dicha sustancia? (Datos: P.A.: Ca = 40, C = 12, 0 = 16).

RESOLÚCIÓN

El peso molecular del compuesto que nos dan es: $CaCO_3$ => 1.40 + 1.12 + 3.16 = 100

El número de moles es:
$$\frac{g}{Pm} = \frac{25,0}{100}$$
 ; No moles = 0,25 moles

Nº moléculas = 0,25 . 6,023.10²³ = 1,5.10²³ moléculas del compuesto

3.- El galio, Ga, tiene dos isótopos de masas atómicas 68,926 y 70,926 u. El número atómico del galio es 31. ¿Cuántos protones y neutrones constituyen el núcleo de cada isótopo? Escribir los símbolos de ambos isótopos.

RESOLUCIÓN

Los números másicos de ambos son, respectivamente: 69 y 71, por lo que la composición del núcleo de ambos es Ga-69:; 31 protones y (69 - 31) = 38 neutrones

Ga-71: 31 protones y (71 - 31) = 40 neutrones

- 4.- Identificar que tipo de grupos funcionales poseen los siguientes compuestos: a) CH₃-C(CH₃)₂-OH, b) CH₃-CH₂-COOH, c) CH₃-CH=CH₂, d) CH₃-CHO, e) CH₃CH₂-CH₂-OH, f) CH₃-CO-CH₃ RESOLUCIÓN
 - a) CH₃-C(CH₃)₂-OH ,El grupo alcohol (-OH), aunque tiene también una ramificación, ésta no puede considerarse propiamente como grupo funcional
 - b) CH₃-CH₂-COOH El grupo ácido: COOH
 - c) CH₃-CH=CH₂: el doble enlace: -CH=CH₂
 - d) CH₃-CHO El grupo aldehído (carboxilo): CHO
 - e) CH₃CH₂-CH₂-OH: El grupo alcohol (-OH)
 - f) CH₃-CO-CH₃ El grupo cetona (carboxilo) CO

PROBLEMA

1.-Calcular el pH de las siguientes disoluciones acuosas: a) 5,5.1 0⁻² M de HNO₃, b) 2,5.10⁻² M de KOH RESOLUCIÓN

En ambos casos se trata de electrolitos fuertes, y por tanto completamente disociados. Sus equilibrios de disociación son:

	HNO ₃	\=	H+ +	NO ₃ -
Inicial	5,5.10 ⁻²			
En equilibrio			5,5.10 ⁻²	5,5.10 - 2

$$pH = -lg [H^+]; pH = -lg 5,5.1 0^{-2}$$

$$pH = 1.26$$

	КОН	<=>	K+ +	OH -
Inicial	2,5.10-2			
En equilibrio			2,5.10 ⁻²	2,5.10 - 2

$$pOH = -lg [OH^{-+}]; pOH = -lg 2,5.1 0^{-2}$$

$$pOH = 1,6$$
; y como $pH + pOH = 14$

$$pH = 14 - 1,6 = 12,4$$
; $pH = 12,4$