INTRODUCCIÓN A LA QUÍMICA - Curso de Acceso para mayores de 25 años Septiembre -2007 - Original

Material: Calculadora . No se permite tabla periódica . Tiempo: 1 hora Puntuación: *Cuestiones: máximo 1, 5 puntos, Problema: máximo 4 puntos.*

CUESTIONES

- 1.-Se administra a un paciente por vía intravenosa 0,50 L de una disolución de glucosa (C ₆ H ₁₂ O ₆) 1,0 M. ¿Cuántos gramos de glucosa ha recibido el paciente? (Datos: C = 12, 0=16,H=1).
- 2.- Si se combinan el elemento X de Z = 11 con el elemento Y de Z = 17, ¿qué compuesto se formaría?, ¿qué tipo de enlace tendría?.
- 3.- Indicar cuál es el oxidante y cuál es el reductor en el siguiente proceso de oxidación-reducción sin ajustar: I₂ + CI₂ —> ICI. Escribir las semirreacciones de oxidación-reducción.
- 4.- La concentración de iones hidroxonio, (H₃O⁺), de una disolución es igual a 5.10⁻² iones-gramo /litro. Calcular el pH.

PROBLEMA

1.- Al tratar hidruro cálcico, (CaH₂), con agua se forma hidróxido cálcico, (Ca(OH)₂, y se desprende hidrógeno. a) Ajustar la reacción; b) ¿Qué cantidad de hidruro cálcico de un 87% de pureza se necesitará para obtener 2 m³ de hidrógeno medidos a 25 °C y 720 mm de Hg? (Datos: H = 1; Ca = 40,08).

SOLUCIONES

1º - Se administra a un paciente por vía intravenosa 0,50 L de una disolución de glucosa (C ₆ H ₁₂ O ₆) 1,0 M. ¿Cuántos gramos de glucosa ha recibido el paciente? (Datos: C = 12, 0=16,H=1).

RESOLUCIÓN

El peso molecular de la glucosa es: $C_6H_{12}O_6 ==> 6.12 + 12.1 + 6.16 = 180 g/mol$

Teniendo en cuenta la fórmula que nos da la Molaridad de una disolución: $M = \frac{g_{SOLUTO}}{Pm_{SOLUTO}.L_{DISOLUCION}}$, al

sustituir todos los datos conocidos: 1,0 = $\frac{g_{SOLUTO}}{180.0.5}$, de donde:

g _{soluto} = 90 gramos de glucosa

2º - Si se combinan el elemento X de Z = 11 con el elemento Y de Z = 17, ¿qué compuesto se formaría?, ¿qué tipo de enlace tendría?.

RESOLUCIÓN

Las configuraciones electrónicas de ambos son:

- **X** (Z = 11): 1s² 2s² 2p⁶ 3s¹ Se trata de un metal perteneciente al grupo 1 del Sistema Periódico, (un alcalino: el Sodio) cuya valencia es 1+, pues pierde con facilidad el electrón de su última capa para adquirir la configuración electrónica externa del gas noble anterior (2s² 2p⁶)
- Y (Z = 17): 1s² 2s² 2p⁶ 3s² 3p⁵ Se trata de un elemento perteneciente al grupo 17, ó 7A, del Sistema Periódico (un Halógeno: el Cloro) cuya valencia es 1-, ya que tiene tendencia a ganar un electrón y adquirir la configuración electrónica externa del gas noble siguiente (3s² 3p⁶)

El compuesto que se formará entra ambos es el XY (Na Cl), con enlace iónico por tratarse de dos elementos de muy diferente electronegatividad (un metal y un No metal)

3º - Indicar cuál es el oxidante y cuál es el reductor en el siguiente proceso de oxidación-reducción sin ajustar: I₂ + CI₂ —> ICI. Escribir las semirreacciones de oxidación-reducción.

RESOLUCIÓN

De los dos elementos dados, el más oxidante es el cloro, pues se trata del más electronegativo de los dos: ambos pertenecen al mismo grupo, los Halógenos, pero el Cloro está situado más arriba.

La reacción de reducción del Cloro es: Cl₂ + 2 e⁻ -> 2 Cl⁻

La reacción de oxidación del Yodo es: 12 -> 21 + 2 e

Y por tanto, la reacción global de ambos, obtenida al sumar las dos anteriores, es

4º - La concentración de iones hidroxonio, (H $_3$ O $^+$), de una disolución es igual a 5.10 $^{-2}$ iones-gramo /litro. Calcular el pH.

RESOLUCIÓN

El pH se define como: pH = - Lg [H₃O⁺], por lo que en este caso sustituimos directamente en esta expresión :

$$pH = - Lg (5.10^{-2}) = 1.3$$

PROBLEMA

Al tratar hidruro cálcico, (CaH₂), con agua se forma hidróxido cálcico, (Ca(OH)₂), y se desprende hidrógeno. a) Ajustar la reacción; b) ¿Qué cantidad de hidruro cálcico de un 87% de pureza se necesitará para obtener 2 m³ de hidrógeno medidos a 25 °C y 720 mm de Hg? (Datos: H = 1; Ca = 40,08).

RESOLUCIÓN

La reacción que tiene lugar, ya ajustada es:

$$CaH_2 + 2H_2O \longrightarrow Ca(OH)_2 + 2H_2$$

Para determinar la cantidad de Hidruro de calcio que se necesita, hemos de tener en cuenta la estequiometría de la reacción, para lo cual previamente vamos a calcular el nº de moles (o de gramos) de Hidrógeno que hay en el volumen dado, utilizando para ello la ecuación general de los gases:

$$P.V = \frac{g}{Pm}.R.T = > \frac{720}{760}.2000 = \frac{g}{2}0,082..298$$
; g = 155,08 g de H₂

Y con esta cantidad, ya podemos tener en cuenta la estequiometría de la reacción para calcular la cantidad de CaH 2 puro que se necesita:

CaH ₂ +	2 H ₂ O ->	Ca(OH) ₂ +	2 H ₂
1 mol = 42,08 g	2 moles	1 mol	2 moles = 4 g
Х			155,08

de donde:
$$X = \frac{155,08.42,08}{4} = 1631,41$$
 gramos de CaH₂ puro que se necesita

Pero como el mineral de que se dispone tiene una riqueza del 87%, tendremos que:

X = 1875,19 g del mineral de CaH 2 se necesitan