2º BACH - 10 febrero 2004 Problema nº 4

La entalpía de formación estándar del U_3 O_8 es de Λ H = - 3567,6 Kj. Sabiendo que la entalpía para la reacción siguiente es: 3 UO $_2$ + O $_2$ —> U $_3$ O $_8$; Λ H = -317,72 Kj, calcule la entalpía de formación estándar del UO $_2$

RESOLUCIÓN

La reacción cuya entalpía hemos de obtener: la de formación del dióxido de Uranio, es:

$$U + O_2 \longrightarrow UO_2$$

Y disponemos de datos para las reacciones:

A)
$$3 U + 4 O_2 \longrightarrow U_3 O_8$$
; $\Lambda H = -3567,6 Kj$,

B)
$$3 UO_2 + O_2 \longrightarrow U_3 O_8$$
; $\Lambda H = -317,72 Kj$,

Para ello, tomamos 1/3 de la reaccióninversa a la B), con lo cual conseguimos que aparezca en los productos de reacción 1 mol de UO 2, pero como nos queda como reactivo 1/3 de U 2 O 8, debemos tomar también 1/3 de la reacción A) para eliminarlo. Así, nos quedará:

- 1/3 B)
$$\frac{-1/3 \text{ U}_3 \cdot \Theta_{\text{e}}}{-}$$
 ----> $\frac{\text{UO}_2 + 1/3 \text{ O}_2}{1/3 \text{ A}}$; $\frac{\Lambda}{\Lambda} \text{ H} = 1/3 \text{ (+ 317,72) Kj}$
1/3 A) $\frac{\Lambda}{\Lambda} \text{ U} + 4/3 \text{ O}_2 \longrightarrow \frac{-1/3 \text{ U}_3 \cdot \Theta_{\text{e}}}{-}$; $\frac{\Lambda}{\Lambda} \text{ H} = 1/3 \text{ (- 3567,6) Kj}$

De donde al simplificar el O2 y sumar nos queda ya la reacción pedida:

$$U + O_2 ----> UO_2$$
; $\Lambda H = 1/3(+317,72) + 1/3(-3567,6) = 105,91 - 1189,2 = -1083,3 KJ$

que es la reacción de formación del dióxido de uranio pedida:

$$U + O_2 ---> UO_2 ; \Lambda H = -1083,3 KJ$$