4º B eso - FÍSICA Y QUÍMICA - 3ª evaluación - 21 mayo 2009

- 1 Se tiene una muestra de SULFATO DE CALCIO. Calcular: a) Su composición centesimal; b) ¿Cuantos moles y moléculas de dicho compuesto hay en 13,6 gramos del mismo? c) ¿Cuantos átomos de oxígeno hay?
- 2 Calcular la fórmula empírica del compuesto cuya composición es la siguiente:

35,37% de Cr, 26,53% de K y el resto O

- 3 -Se tienen 64 gramos de oxígeno (O₂) en condiciones normales de presión y temperatura. Calcular el volumen que ocuparán a una presión de 900 mm Hg y una temperatura de 37°C. ¿Cuantos moles y moléculas se tienen?
- 4- Formule los siguientes compuestos:
- 1- Ác.nítrico; 2- Sulfato de sodio; 3- Óxido de Manganeso(VI); 4- Trisulfuro de dihierro; 5- Ac. Tetraoxocrómico(VI) 5- Nombre los siguientes compuestos:

1- CaBr₂; 2- SO₃; 3- H ClO₃; 4- K MnO₄; 5- H₂CO₃

6- Enuncie y escriba la fórmula de las tres leyes generales de los gases ideales: Boyle, Gay-Lussac y Avogadro

7- Defina los siguientes conceptos: MOL, ÁTOMO, VOLUMEN MOLAR NORMAL, GAS IDEAL

DATOS: Masas atómicas: AI = 27; B = 11; Br = 80; Ca = 40; CI = 35,5; Cr = 52; H = 1; O = 16; S = 32

SOLUCIONES

1 - Se tiene una muestra de SULFATO DE CALCIO. Calcular: a) Su composición centesimal; b) ¿Cuantos moles y moléculas de dicho compuesto hay en 13,6 gramos del mismo? c) ¿Cuantos átomos de oxígeno hay?

RESOLUCIÓN

El peso molecular del compuesto que nos dan es: CaSO₄ => 40 + 32 + 4.16 = 136

Composición centesimal: Ca:
$$\begin{cases} 136 - - - 40 \\ 100 - - - x \end{cases} x = \frac{40.100}{136} = 29,41\% \text{ de Ca}$$
S:
$$\begin{cases} 136 - - - 32 \\ 100 - - - x \end{cases} x = \frac{32.100}{136} = 23,53\% \text{ de S}$$
O:
$$\begin{cases} 136 - - - 64 \\ 100 - - - x \end{cases} x = \frac{64.100}{136} = 47,06\% \text{ de O}$$

El número de moles es: $\frac{g}{Pm} = \frac{13.6}{136}$; **Nº moles = 0,10 moles**

 N° de moléculas = 0,10.6,023.10²³ = **6,023.10²² moléculas de CaSO**₄

Para calcular el número de átomos gramo de cada oxígeno hemos de tener presente la fórmula del compuesto,: CaSO₄ en la que podemos ver que en cada molécula del mismo hay 4 átomos de oxígeno, por lo que en las 6,023.10²² moléculas del compuesto tendremos:

 $O: 4.6,023.10^{22} = 2,40.10^{23}$ átomos de Oxígeno

2 - Calcular la fórmula empírica del compuesto cuya composición es la siguiente:

35,37% de Cr, 26,53% de K y el resto O

RESOLUCIÓN

Se parte de 100 g del compuesto, pues con esa cantidad sabemos que tenemos 35,37 g de cromo, 26,53 g de Potasio y el resto: 100 -35,37 - 26,53 = 38,10 g de Oxígeno y se determina el número de átomos-gramo de cada elemento hay en esos 100 g, para lo cual solamente

tenemos que dividir las masas de cada elemento entre sus respectivos pesos atómicos:

at - g de Cr =
$$\frac{35,37}{52}$$
 = 0,68
at - g de K = $\frac{26,53}{39}$ = 0,68
at - g de O = $\frac{38,10}{16,00}$ = 2,38

at - g de $Cr = \frac{35,37}{52} = 0,68$ at - g de $K = \frac{26,53}{39} = 0,68$ at - g de $K = \frac{26,53}{39} = 0,68$ at - g de $K = \frac{38,10}{16,00} = 2,38$ at - g de $K = \frac{38,10}{16,00} = 2,38$ por lo que la fórmula empírica es $K_{0,68}$ $Cr_{0,68}$ $Cr_{0,68}$

$$K_{\frac{0.68}{0.68}}Cr_{\frac{0.68}{0.68}}O_{\frac{2.38}{0.68}}$$
 \Rightarrow K Cr $O_{3,5}$ Y para que sean números enteros,

dado que nos aparece un número decimal, multiplicamos los tres por "2",

con lo que la fórmula empírica del compuesto dado nos queda:

$$(K_2Cr_2O_7)_n$$

3 -Se tienen 64 gramos de oxígeno (O2) en condiciones normales de presión y temperatura. Calcular el volumen que ocuparán a una presión de 900 mm Hg y una temperatura de 37°C. ¿Cuantos moles y moléculas se tienen?

RESOLUCIÓN

Con los datos que tenemos en este caso, podemos calcular directamente el volumen, sin tener en cuenta para nada el hecho que los 64 g se encuentren inicialmente en Condiciones Normales

DATOS QUE SE TIENEN

Masa = $64 g de O_2$

Masa molecular del O₂ = 2.16 = 32 g/mol

Presión: 900 mm Hg = $\frac{900}{760}$ = **1,18 atm**

Volumen = ?

Temperatura: 37°C = 37+273 = 310 K

Ecuación a utilizar $P.V = \frac{g}{Pm}.R.T$;

 $1,18.V = \frac{64}{32}.0,082.310$

de donde $V = \frac{64.0,082.310}{32.1,18}$ = **43,08 Litros**

N° de moles = $\frac{g}{Pm} = \frac{64}{32}$ = 2 moles de O₂

 N° de moléculas = 2.6,023.10²³ = **12,046.10²³ moléculas de O**₂

4- Formule los siguientes compuestos:

1- Ác.nítrico; HNO₃

3- Óxido de Manganeso(VI); MnO₃

5- Ac. Tetraoxocrómico(VI): H₂CrO₄

2- Sulfato de sodio: Na₂ SO₄

4- Trisulfuro de dihierro: Fe₂S₃;

5- Nombre los siguientes compuestos:

1- CaBr ₂ ; Dibromuro de calcio Bromuro de calcio(II)

2- SO₃ Trióxido de azufre Óxido de azufre(VI)

3- H CIO₃ Trioxoclorato(V) de H Ác. Trioxoclórico(V) Ác. Clórico

4- K MnO 4 Tetraoxomanganato(VII) de potasio Permanganato de potasio

5- H₂CO₃ Trioxocarbonato(IV) de H ... Ác. Trioxocarbónico(IV) .. Ác. Carbónico